热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

为了探测这种神秘的粒子,这些世界大国都在挖坑、灌水 | 曹俊

2022-11-02 20:49     来源:格致论道讲坛     中微子
中微子振荡不仅特殊,

而且科学意义非常重大,

是因为它有可能能够突破现有的理论框架,

发现自然界新的基本规律。

我今天演讲的题目是“幽灵粒子的变身之谜”,其实讲的是中微子振荡。

中微子是宇宙中最基本的粒子之一,也是宇宙中数量最多的物质粒子,它比我们已知的质子、中子、电子要多十亿倍。但是它有一个很奇怪的特性,就是它基本上不和物质发生相互作用,所以很难探测到它。每秒钟都会有万亿个中微子穿过我们的身体,就和穿过空气一样,它不会发生任何反应。

中微子还有一个非常特殊的性质,就是它能够变身。它在飞行过程中会从一种中微子变成另一种中微子,而且还能变回来,我们把这叫做中微子振荡。这是20多年前才发现的中微子非常特殊的性质。

中微子振荡不仅特殊,而且科学意义非常重大,是因为它有可能能够突破现有的理论框架,发现自然界新的基本规律。宇宙在起源演化过程中有很多未解之谜可能和它有关系,所以我们需要去研究中微子振荡。

中微粒子振荡的发现过程已完成:10% //////////

因为中微子很难探测,所以研究它的过程非常曲折而复杂,今天我向大家分享的就是在中微子振荡发现中发生的故事。

首先,我们提到中微子振荡,就必须要提到这个科学家——小柴昌俊。他是日本的科学家,写过一本自传,叫《我不是一个好学生》,因为他当时在他们班上是倒数第一名。

但就是这样一个差学生,成为了中微子研究的先驱之一。他领导建立了日本的神冈实验;他的学生建造了一个5万吨的超级神冈实验。在2020年,更下一代的中微子实验——顶级神冈实验也得到了批准,预期在2027年建成。

在发展神冈实验的过程中,小柴昌俊发展了两项核心技术。第一项就是照片上他抱着的50厘米大的光电倍增管,可以探测到单光子,是非常灵敏的一个光电探测技术。另一项技术,我们把它叫做挖坑、灌水。他们在地下1000米的地方挖了一个坑,灌了3000吨纯净水。到1996年时,他们灌的是5万吨纯净水,即使到现在仍然是世界上最大的探测器。到下一代,他们会建造一个26万吨纯净水的探测器。

但是小柴昌俊走向中微子的研究道路,纯粹是一个偶然,因为他最初的物理目标不是中微子,而是去找质子衰变。

我们知道,自然界是由六种夸克和六种轻子组成的,然后有三种力把这些基本粒子结合在一起,组成宏观物质,比如质子就是由三种夸克组成的。在宇宙诞生的最早期,弱相互作用力和电磁力其实是同一种力,这两种力是统一的,这是我们已经发现了的科学规律。

那么大家就想,有没有可能这三种力在宇宙更早期时就是统一的,或者说能量更高时,它们就是同一种力。我们把它叫做大统一理论。如果这几种力能够统一为一种力,就会出现一种现象,即质子会衰变,这就是小柴昌俊当时去找的质子衰变现象。

如果质子衰变了,整个世界都会土崩瓦解,变成像灰尘一样的东西。不过大家不用担心,神冈实验和超级神冈实验都没有找到质子衰变,而且给它了一个下限,就是说质子即使会衰变,它的寿命也会长于10的34次方年。我们知道宇宙的寿命到现在是138亿年,也就是10的10次方,所以质子的寿命至少比宇宙的寿命还要长一亿亿亿倍,所以大家不用担心。

虽然没有找到质子衰变,但是他们偶然地发现了中微子存在重大问题。

我们周围充斥着很多中微子,比如在宇宙大爆炸的第一秒钟就产生了无穷多的中微子,这些中微子一直留存到现在。整个宇宙空间,每一立方厘米的空间之内,就会有300个这样的中微子。只不过它们随着宇宙膨胀变得特别冷,还没有办法探测到。如果我们有办法探测到这些中微子,就一直能看到宇宙诞生的第一秒钟。

我们还知道宇宙中的超新星爆发会产生特别多的中微子。太阳发热的过程中,里面的轻核聚变也会放出很多中微子。宇宙线打在地球的大气层里,会产生大气中微子。人工的加速器会产生中微子。地球里有放射性的铀、钍、钾,它们衰变会产生地球中微子。核电站在发电的过程中也会产生大量的中微子。比如大亚湾核电站的六个反应堆,每一秒钟能够产生35万亿亿个中微子。我们人体里面也会产生中微子。每个人身体里都有钾,钾40会衰变,每天会产生4亿个中微子。

这和质子衰变有什么关系呢?因为质子衰变即使有,也是非常稀少的,为了看到质子衰变,我们必须要把所有的假信号全部去除掉。

所以要想看到质子衰变,我们必须要把这些假信号研究清楚。大气中微子就是其中一个最重要的假信号来源。

为了研究质子衰变,1988年,小柴昌俊的学生梶田隆章就对大气中微子进行了非常深入的研究。他发现了一个很反常的现象,就是大气中微子和我们想的不一样,他看到的大气中微子的数目比我们预期的要少很多,这和理论不一样,我们把它叫做大气中微子反常。

他看到了大气中微子反常,但是神冈实验没有办法给出更多的信息,我们并不知道它为什么会出现这种现象。如果想把它研究清楚,我们需要一个性能更好、更大的探测器,需要花很多钱。如果不能建这样一个探测器,也许会花费我们更长的时间,才能知道中微子振荡现象。

但是神冈实验的运气非常好,就在小柴昌俊退休的前一个月,发生了一次超新星爆炸。超新星爆炸在宇宙的演化过程中起着非常重要的作用,比如组成人体的很多比较重的元素,只有在超新星爆发中才能合成。太阳系也是一次超新星爆炸留下来残余物。

小柴昌俊他们通过神冈实验,看到了超新星爆炸的中微子,证实了中微子在超新星爆炸中起着非常重要的作用。这是一个非常有意思的成果。

而且他们运气很好的另一个方面,就是神冈实验最初设计出来不是为了探测中微子的,它是为了探测质子衰变的。它探测的能量比较高,如果这样是看不见中微子的,即使超新星爆炸了也看不见。1985年,他们想去研究太阳中微子,因为太阳中微子也出了问题,所以他把探测器做了三项重要的改进,花了两年的时间不停地改进技术。最后就在1987年,超新星爆发之前不久,可能只有一个月时间,解决了所有技术问题,能够探测到低能中微子,这样他们就看到了超新星中微子。因为超新星中微子非常重要,所以这个重要的成果使小柴昌俊获得了2002年的诺贝尔奖。

也因为这个重要的成果,日本政府觉得中微子研究很有前途,所以批准了他们建一个非常大的探测器,来研究大气中微子反常。

这就是他们建造的超级神冈的探测器,里面有5万吨的纯净水,周围我们看到的这些小点,都是一个个直径50厘米的光电倍增管。为了装这些光电倍增管,他们划着小船,在里面一层一层地安装。

有了这样一个更好的探测器和更多的数据量,1998年时,梶田隆章就利用超级神冈的数据发现了中微子振荡。

他发现电子中微子和我们的预期是一样的,没有减少。但是另一种中微子,缪(μ)中微子减少了,而且减少的程度和中微子飞行的距离是有关系的。这样就发现了中微子振荡的一个关键证据,和飞行的距离有关系。

虽然超级神冈是第一个发现中微子振荡的,但是第一个发现中微子振荡的迹象的并不是超级神冈实验。

更早的时候,有一个美国科学家戴维斯,他想用一种核化学的办法寻找中微子存在的证据。中微子是1930年被预言,1956年被实验探测到的,那时还没有探测到,他想首先去找中微子存在的依据。

于是他跑到反应堆前去测中微子,没有测到,因为那时我们对中微子的了解还不够多,不知道正中微子跟反中微子是不一样的粒子。他的方法只能测到正中微子,不能测到反中微子,所以他没有看到。另一个科学家用另一种办法抢先发现了中微子存在的依据。然后他就把他的探测器搬到了一个地下1000多米的井里,去探测太阳中微子。

太阳中微子的探测也非常重要,因为我们很早就猜测,太阳的能源来源有可能是轻核聚变。但是太阳离我们这么远,而且我们看不见太阳里面发生了什么事,所以这只是一个猜想。

但是中微子会给我们提供一个新的途径,因为中微子的穿透能力非常强,它可以从太阳的核心一直穿到地球上来。这样我们探测到太阳中微子,就知道在太阳里面发生了什么事。

戴维斯在七十年代探测到了太阳中微子,他也因为这个成果和小柴昌俊一起获得了2002年的诺贝尔奖。

他不光探测到太阳中微子,而且还发现太阳中微子有一个特别奇怪的现象。就是我们看到的中微子比预期的要少很多,只看到了三分之一,大部分的中微子都丢了。这叫做太阳中微子失踪之谜。

为什么丢呢?早期我们大家也猜想,是不是中微子存在振荡现象,这样它在飞行过程中就丢了。但是,如果是因为中微子振荡,因为太阳很大,不同地方产生的中微子飞到地球的距离不一样,这样我们看到的应该是一个平均的效果。中微子最多只能丢一半,因为平均下来就只会丢一半。而他看到的是三分之二都丢了,所以大家觉得不是中微子振荡。

不同的实验给出的结果也不一样,有的说丢了一半,有的说丢了三分之二等。再加上这个实验非常困难,如果是这个实验做得不准怎么办?

他不服不停地做这个实验,一直做了30年,30年的结果显示出来,确实是丢了三分之二。他获得诺贝尔奖时,是当时年纪最大的获奖者。

1984年,有一个华人科学家,叫陈华森,是美国加州大学尔湾分校的,他提出来一个非常天才的想法。他说如果用重水去探测太阳中微子,同时可以探测三种过程,就可以知道到底是太阳发出的中微子本来就比较少,还是在太阳飞到地球的过程中减少了。

他提出在加拿大的萨德伯里做这个实验,因为他要用1000吨的重水,重水非常贵,但是加拿大的反应堆是采用重水堆的技术路线,所以核电站有很多重水。于是他花了一美元,借了价值3亿美元的1000吨重水。 但是很不幸,提出这个实验三年后他就因病去世了,如果不是因为他生病,中微子振荡的诺贝尔奖应该是他的。

在他去世后,加拿大人麦克唐纳接替了他的工作,建成了萨德伯里实验,同时在2001年发现了太阳中微子振荡现象:太阳发出的中微子总数其实没有减少,但太阳发出的电子中微子确实是变少了,也就是说电子中微子变成了其他种类的中微子。

同时理论上也有比较大的进展,就是在太阳里有很大的物质效应,这些物质效应会改变中微子振荡的行为。 不同的实验可以看到不一样的结果,这样也解释了不同实验的矛盾。到此为止,我们就相信中微子振荡确实是存在的。

因此,2015年的诺贝尔奖授给了梶田隆章和麦克唐纳,表彰他们发现了中微子振荡现象,证实了中微子有质量。

中微子有质量是第一次有坚实的实验证据,超出了粒子物理的标准模型,我们有可能会通过中微子振荡的研究突破现有的理论框架,发现自然界的新规律。

第三种振荡存在吗已完成:50% //////////

三种中微子应该存在三种振荡,我们已经发现了大气中微子和太阳中微子振荡,所以还应该有一种振荡,我们把它叫做用θ13标志的振荡。

在八十年代和九十年代,法国和美国各做了一个实验,也就是图中一公里的地方的这两个实验,他们说没有看到振荡。一直到2002年,日本发表的成果中都已经假定这个振荡就是零。如果这个振荡是存在,它应该像右图中蓝色的线,那里有一个非常快的振荡。

在离反应堆两公里的地方,我们应该看到中微子的变化。因此,2003年我们就提出做大亚湾反应堆中微子实验,这个实验是在大亚湾核电站的园区里。

中间这张图上有六个黑色的小圆点,这就是大亚湾和岭澳核电站的六个反应堆。在地下有三个实验大厅,它们是建在山体里面的,通过隧道连起来。有两个近点实验厅是靠近两个反应堆的,这些反应堆用来监控核电站到底放出来多少中微子。有一个远点,放了四个探测器,这个远点就能探测中微子从反应堆飞出来以后有没有变化。

我们这个实验大厅是2011年底刚建成的。到2012年时,发现了新的中微子振荡。而且发现这个振荡的参数比预期的要大很多,打开了未来中微子研究的大门。因为如果这个振荡很大,那么中微子的下一步研究现在就可以做。如果这个振荡非常小,或者说等于零,那么我们现有的技术就没有办法进行这样的实验,也许还要花上几十年的时间去研发新的技术,知道怎样提高中微子的探测效率后才能做这项实验。

所以大亚湾发现这个新的振荡后,全世界的中微子科学家都非常高兴,因为我们接下来就可以做下一步的实验了。这个成果获得了2016年的国家自然科学一等奖和美国的科学突破奖。

我们设计了8个探测器,近点2个,远点4个,有两个近点。在我们看到的这个水池里,应该有两个中微子探测器,每一个探测器的直径是5米,重110吨。但是,我们这里只放了一个,为什么呢?

2011年,日本有一个实验表明,这个振荡有可能比较大。很不幸,因为2011年的福岛地震把他们的实验装置震坏了,没有办法进行实验,所以只能先把这个进行到一半的结果发表了。

我们当时就进行了很多讨论,如果继续按照目前的节奏走,他们有可能会抢先发现中微子振荡。在经过反复的论证后,我们最后决定不等所有探测器修完,只用六个探测器就开始了运行。所以这个水池里只有一个探测器,远点的水池里实际上只放了三个探测器。

只用了55天的数据,我们就发现了新的中微子振荡。发现后,我们又运行了半年时间,然后停机,把八个探测器全部装上去,一直运行下来。

这是我们连接各个实验厅的隧道的照片。

这张照片是工作人员在实验厅里安装中心探测器。每一个探测器110吨,我们把它吊装到水池里后,在上面连接电缆。从2012年在大亚湾刚装完全部探测器后,一直稳定地运行。

我们计划2020年12月12日停止运行,一共运行了9年。

中微子振荡研究并未结束

已完成:70% //////////

发现中微子振荡后,我们主要做了三个方面的研究。

第一个方面是继续提高振荡的测量精度。现在的振荡精度从最初的20%提高到3%。因为这是一个自然界的基本参数,几乎所有的中微子研究都会用到这个参数,也有很多粒子物理的理论需要用到这个参数,所以这个参数的精确度是非常重要的。我们现在是世界上最高的精度,而且未来20年,不会有实验比我们更加准确。

第二方面的成果是测量反应堆中微子的能谱,这是一个意外的成果,是我们在设计过程中没有想到的。在研究中微子振荡的过程中,我们顺便测了反应堆发出来的中微子能谱,然后发现它和理论不一样。

首先是总数差了5%。其次在这里可以看到,在中间有一个地方比预期的要多很多。为什么多很多?我们现在不知道。所以准备做一个新的实验,叫台山中微子实验,去解决这个问题。我们认为,有可能是因为核数据库不准确,通过这个实验,我们将会提高核数据库的精度。

第三个是寻找新物理,以前有两个美国实验,认为存在第四种中微子,叫做惰性中微子。我们的结果证明,他们的结果可能是错的。

在大亚湾发现第三种振荡后,我们已经知道了三种振荡,但是中微子振荡的研究并没有结束,还有两个非常重要的问题需要解决,一个是中微子的质量顺序,另一个叫中微子的CP破坏。

中微子的质量顺序,就是三种中微子哪个最重,哪个最轻。质量顺序和宇宙的大尺度结构有关系,和中微子的质量起源也有关系,所以非常重要。而中微子CP破坏的大小和宇宙起源过程中的反物质消失之谜是有关系的。这两个问题是未来一二十年迫切需要解决的问题,而且都具有非常重要的意义。

2008年,江门中微子实验的想法已经提出来了,2013年就开始做这件事,2015年开始修探测器,现在快修完了。

我们计划在地下700米的地方修一个很大的实验厅,里面放一个水池。里面有一个有机玻璃球,灌两万吨的液体闪烁体,周围有四万个光电倍增管来探测中微子振荡。

这个实验在广东的江门开平市,为什么放在这个地方呢?是因为我们是用反应堆中微子来做这件事,它需要离反应堆60公里左右,而且必须要离两个反应堆距离相等,否则不同的振荡就会相互抵消,把信号抵消掉。而我们挑的这个地方离台山和阳江两个核电站都是60公里。

那里有一个小山包,然后我们在这个小山包下面往下挖,挖了700米,修了这个探测器,中间有一系列的技术问题需要解决。

比如我们建了国内最大的地下洞室,还将会建一个国际上最大的有机玻璃容器。以前容器的最大直径是12米,现在我们要建一个35.4米的有机玻璃容器,有12层楼那么高。我们和工厂一起做了很多研发,解决了这个关键问题。

我们还需要世界上探测效率最高的光电倍增管。我们2008年提出这个实验想法时,以那时候的技术是做不出来的,而且只有日本人会做这么大的光电倍增管,就是从神冈实验开始。

为了做这个实验,我们从2008年就开始做研发,最终自己发展出来量子效率最高的光电倍增管,现在比日本的量子效率还要高。现在我们这个实验,绝大部分的光电倍增管都会采用我们国产的大口径的光电倍增管。正是因为有了这个光电倍增管,量子效率提高了一倍,所以我们才能做这件事。

同时我们要采用世界上最透明的液体闪烁体,因为这个探测器很大,如果不够透明,里面产生的光传到边上就会没有了。

现在这个地下隧道已经基本完成了,2020年底,我们会完成全部的开挖工作,安装过程大概需要两到三年。2023年,我们就可以投入运行。

这就是江门中微子实验安装现场的照片,是非常漂亮的一个地方。我们看到有两条红线,一条红线是40%坡度的斜井,我们通过这个走1.3公里,就会到达我们的地下实验大厅。

这个斜井的缆车和风景点的缆车不太一样,往下要走20多分钟。到地下去时,每往地下走100米,由于地球里面散发的地热,温度就会往上升两到三度。所以到我们这个探测器那,现在地下岩石的温度是31度,而且湿度是100%,到处都在滴水。往下走20分钟,上来时全身都是湿漉漉的,最想做的事就是马上洗澡。

这张图里,在远处的山坳里还有一个竖井,这个竖井会垂直到我们的探测器那里,旁边一点点的山底下,就是中微子探测器。

在江门中微子实验2023年建成后,我们需要6年的时间来测量中微子质量顺序,中微子质量顺序是江门最重要的物理目标。

在此之前,我们还可以做很多事。比如中微子振荡共有六个振荡参数,我们可以把其中的三个测到世界最高的精度,好于1%,这是只有江门中微子实验能做的事。然后我们可以探测太阳中微子,解决现在的一个矛盾问题,大概需要几年的时间。我们可以探测到很多地球发出的中微子,我们一年的数据比现在所有的地球中微子数据还要多。我们用六到十年的时间,通过探测地球发出的中微子,能够确定地球物理的演化模型。

我们还可以探测到以前的超新星死亡以后发出来的中微子,它们叫超新星的背景中微子,会弥散在整个宇宙空间。探测到这些中微子,就能够知道宇宙的大尺度结构。

同时我们知道,1987年以来,再也没有近距离的超新星发生过。如果它再发生一次,我们能够探测到大概5000个中微子,而以前探测到的所有中微子只有20多个。有了这么精确的数据,我们能就超新星爆发的机制给出一个很好的限制。

当然我们也可以去寻找质子衰变。

除了江门中微子实验外,现在国际上还有两个同样规模的实验正在建设。一个是美国的沙丘实验,他们刚刚开始建设,可能会在2027到2030年之间建成。另一个是日本的顶级神冈实验,也计划2027年建成。他们比我们都要晚。

这是三个世界上最大的下一代中微子实验,有很多物理目标是相同的,但是又各有所长。这样既有竞争,也有合作,互相弥补。

未来的十几年,中微子振荡的相关研究会给我们带来更多的惊喜,更多的科学发现。

推荐阅读

宇宙高能中微子来源重要证据发现

研究人员说,冰立方中微子天文台已经从NGC 1068中累计检测到大约80个太电子伏特能量的高能中微子,虽然这还不足以回答所有的问题,但这绝对是迈向中微子天文学时代的一个重要步骤。 2022-11-08

新的 MicroBooNE 分析仔细研究了无菌中微子

美国能源部费米国家加速器实验室的 MicroBooNE 实验的一项新结果探索了标准模型——科学家们关于宇宙如何运作的最佳理论。该模型假设存在三种中微子。 2022-11-02

用幽灵粒子——中微子,探索时空的结构

中微子是一种几乎没有质量、难以捉摸的“幽灵粒子”,它们能够毫不费力地穿过几乎任何物质,不会减速或者改变方向,不受阻碍地进行超长距离的旅行。正因如此,这些携带着有关它们来源信息的粒子,其实扮演着宇宙“信使”的角色。 2022-10-28

从超新星爆炸前,发出的几十个中微子中,发现了恒星死亡的秘密!

由于超新星爆炸前的中微子探测,可以让科学家更好地评估这些模型,一组OzGrav科学家调查了恒星演化模型的后期阶段,以及它们与超新星爆炸前中微子估计的相关性。 2022-10-26

阅读排行榜