元素新闻
研究小组此次详细分析了ASTRO-F此前获得的恒星AFGL2006周围的近红外分光光谱,发现低温环境下含氮的氰酸根离子的存在量与紫外线强度密切相关。这表明,在宇宙空间的低温环境下,形成氨基酸等含氮分子的化学过程初期阶段,紫外线发挥着重要作用。
2022-12-27
“也因此,通常通过射电或X射线观测就能搜寻到这些中子星。”顾为民解释道。中子星记录了大质量恒星的质量分布、演化历史、银河系重元素增丰等关键信息。“比如,黄金可能主要来源于中子星的碰撞。”
2022-12-22
反应堆生产的放射性核素,又称反应堆放射性核素(见放射性、核素)。常规生产供应的放射性核素已达200多种,几乎包括了周期表中绝大多数元素的主要放射性同位素,这些放射性核素中的很大部分,反应堆都能生产。
2022-12-19
这些新合同要求为HFR和铀靶提供多年的燃料元素供应,以生产放射性同位素Mo-99等。燃料将来自法国罗马的法马通CERCA燃料制造厂。60多年来,CERCA一直在为研究反应堆生产核燃料和铀靶。
2022-12-11
核分析技术(NAT)被用于环境、健康和工业等各个领域,因为它可以同时对多种元素进行非破坏性分析。
2022-12-08
11 月 22 日至 23 日在巴黎举行的 ESA 部长级理事会会议上,部长们同意资助一项名为“使用放射性同位素能源的欧洲设备”(ENDURE) 的 2900 万欧元(3000 万美元)计划。其目的是开发由放射性元素镅 241 提供动力的长效热电装置,及时用于 2030 年代初期的一系列 ESA 月球任务。
2022-12-07
在许多方面,中子是神秘的。它们无处不在,存在于所有元素的核心中。然而,它们可能难以检测:与质子或电子不同,它们不带电荷,当通过放射性衰变或核反应释放时,中子可能具有破坏性并使物体具有放射性。了解什么是中子以及如何探测中子是任何国家和平核计划的基础,因此国际原子能机构正在努力通过中子培训帮助加强核能力建设。
2022-11-25
FRIB 的加速器开始以低功率工作,但当它完成加速到全功率时,它将成为地球上最强大的重离子加速器。通过加速重离子——元素的带电原子——FRIB 将使像我们这样的科学家能够创造和研究数千种前所未见的同位素。
2022-11-21
射程和剂量不确定性研究是质子重离子治疗领域的前沿热点课题。在束伽马谱学的元素重建算法不仅可广泛用于质子重离子治疗、硼中子治疗等多个应用场景,为质子重离子治疗擦亮“双眼”、锚定目标对象,向患者提供更精准、更具有针对性的治疗,还将成为连接在束伽马谱学和医学成像之间的一座桥梁,为质子重离子治疗在线医学监测设备开发,实现真正的自适应放疗,奠定坚实的理论和数学算法基础。
2022-11-18
通过分析远紫外光谱探测器 (FUSE) 望远镜的数据,一个国际天文学家团队在一颗名为 HD 149499B 的热白矮星的大气层中发现了铯。这一发现于 11 月 3 日在 arXiv 预印本服务器上报告,标志着首次在热白矮星的大气中发现了这种元素。
2022-11-15