热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

光子新闻

如果不停对粒子加速轰击,结果会得到什么好东西呢?

但其实这种粒子已经存在于博特的实验与居里夫妇的实验中了,只不过他们那时错误地认为实验发现的不过是一种高能的光子,并未加以重视。机会总是留给有准备的人,卢瑟福的学生查德威克看到了居里夫人的文章,他意识到那个粒子绝不可能是光子,随即与卢瑟福进行了讨论,查德威克认为这就是他们10年前就一直在寻找的那个中性粒子。 2022-09-20

电工所在脉冲放电等离子体技术驱动温室气体转化研究中获进展

等离子体是物质的第四种形态,可提供大量中性物种、正负离子、光子和高能电子来参与催化反应。当前,等离子体催化面临的主要问题是缺乏与之匹配的催化剂设计原则,同时反应过程复杂、机制解耦困难。 2022-09-19

自适应质子治疗(五):在线自适应质子放疗策略

当前,已有CT或CBCT用于质子自适应工作流程的相关研究,但是MR对软组织有更好的分辨能力,可将磁共振影像转换成CT影像进而计算光子剂量。已经发布的自适应质子放疗流程主要聚焦于自适应计划本身,CT或CBCT仅仅作为日常影像。将成像技术作为自适应放疗处理方法需假设成像时间短,精度高,由成像偏差导致的后果小。 2022-09-16

新一代“质子刀”武汉安家 每年可服务1500名癌症患者

武汉协和医院肿瘤中心党委书记张涛教授介绍,与传统光子放射治疗方法相比,质子独具布拉格峰剂量分布曲线,被誉为放疗界的“屠龙刀”。通俗来说,协和的这把“质子刀”可将质子射束加速到16万公里/秒,在抵达肿瘤病灶前,能量仅有不足25%的释放,抵达病灶时立即释放至能量峰值,360度无死角实现肿瘤部位的“定点爆破”,同时最大限度地减少对周围健康组织和器官的损害,治疗精度可控制在1毫米以内。 2022-09-09

自适应质子治疗(二):自适应放射治疗的目标、策略及自适应光子治疗的应用

影像引导的放射治疗不仅有更准确的患者摆位,同时也为每日自适应治疗打开了新的大门,这种方法可以直接通过影像扫描确定治疗时的位置,不需要额外进行CT扫描。假设一个CT切片图像中没有变化,基于日常CT成像采用多叶准直器位置调整的方法进行在线自适应。 2022-09-08

基于成像的辐射剂量测量新方法

Abhinav Jha是圣路易斯华盛顿大学McKelvey工程学院的生物医学工程师,他实验室的学生和合作者开发了一种测量α粒子发射放射性药物疗法分布的方法。α粒子是一种辐射形式,对高度局部化的细胞具有强烈的毒性作用。在各种测试中,他们发现拟议的低计数定量单光子发射计算机断层扫描(LC-QSPECT)方法提供了对放射性核素摄取的可靠测量。 2022-08-17

二维材料中首次实现核自旋量子位控制或将拓展量子科学技术前沿

据15日发表在《自然·材料》上的论文,美国普渡大学的研究人员通过使用光子和电子自旋量子位来控制二维(2D)材料中的核自旋,实现了在2D材料中写入和读取带有核自旋的量子信息。他们用电子自旋量子位作为原子尺度的传感器,首次在超薄六方氮化硼中实现了对核自旋量子位的实验控制。该研究工作拓展了量子科学和技术的前沿,使原子尺度的核磁共振光谱等应用成为可能。 2022-08-16

俄罗斯正在建造一个能干扰卫星的地基激光设施

激光是一种创造定向能量窄光束的装置。第一台激光器是在1960年开发的。从那时起,已经有几种类型被创造出来,它们使用不同的物理机制来产生光子或光的粒子。 2022-08-08

Science:X射线第一次帮助研究人员拼凑出珍贵的细胞通道

为了实现这一里程碑式的突破,加州理工学院的研究团队利用了美国能源部SLAC国家加速器实验室的斯坦福同步辐射光源(SSRL)、美国能源部阿贡国家实验室的先进光子光源以及美国布鲁克海文国家实验室的国家同步辐射光源II产生的高能x射线。在多年来的许多实验中,他们用x射线照射晶体化的NPC蛋白样品,照亮样品的原子结构和整体形状。 2022-07-13

宇宙射线,宇宙中最强磁场的新纪录:超过16亿特斯拉

许多观测发现,这类天体的X射线辐射能谱中有“凹陷”结构,即回旋吸收线,这是X射线光子被在磁场中回旋运动的电子共振散射吸收造成的。回旋吸收线的能量与中子星表面磁场的强度相对应;因此,这一现象可以用来直接测量中子星表面附近的磁场强度。 2022-07-13