热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

子新闻

原子高科与南京市第一医院共建放射性药物研发中心签约仪式圆满举行

戚建伟从医院与企业之间产学研合作共赢到加强关键核心技术攻关,从双方提升科研能力到共同加强创新人才队伍建设,对研发中心的建设进行了全面具体的阐述。他表示,此次合作将致力于核医学领域的赋能重塑、整合创新,践行医学与企业社会责任,推动放射性药物的临床转化及发展,共同提升科技创新和产业融合能力! 2022-12-30

原子能院研究成果为解释太阳系硒-74丰度作出贡献

宇宙中重元素的起源一直是核天体物理中极为重要的科学问题之一,被美国《发现》杂志列为当代物理学的11个未解之谜之一。 2022-12-30

2022年我国放射性药物创新体系发展战略研究

放射性药物(简称“放药”)指含有医用同位素制剂、用于疾病诊断或治疗的一类特殊药品,按用途分为诊断类和治疗类(见表1),构成了核医学发展的基石。基于诊断类放药的核医学精准分子诊断,利用示踪技术,在分子层面阐明病变组织的功能变化、基因异常表达、生化代谢变化等,具有灵敏度及分辨率高、快速、准确等优点,是目前几乎所有医学诊断技术中唯一能实现活体代谢过程功能显像的技术,可实现疾病的早期诊断,可据此制定更有效的预防或治疗方案。 2022-12-30

用于伽马射线天文学的立方体卫星

CubeSat 为由相对较小的团队建造、测试和操作的有效载荷提供相对快速、低成本的空间访问,学生和早期职业研究人员做出了大量贡献。紧凑型低功率探测器、读出电子设备和飞行计算机的不断进步现在已经使 X 射线和伽马射线传感有效载荷能够适应 CubeSat 任务的限制,从而允许在轨演示新技术和创新的高-能量天文观测。伽马射线感应立方体卫星肯定会通过探测和定位伽马射线暴、太阳耀斑和地球伽马射线闪光等明亮瞬变。 2022-12-29

高能同步辐射光源|怀柔科学城明年5个“十四五”项目开工建设

怀柔科学城已现雏形,“十三五”29个科学设施土建工程全部完工,地球系统数值模拟装置和5个第一批交叉研究平台正式运行,综合极端条件实验装置进入科研状态,子午工程二期、多模态跨尺度生物医学成像设施、高能同步辐射光源、8个第二批交叉研究平台和11个科教基础设施进入设备安装调试阶段。 2022-12-29

家庭防疫消毒慎用紫外线设备

紫外线位于光谱中紫色光之外,为不可见光。在日常生活中,人们经常利用紫外线杀菌消毒,例如在太阳底下晒被子就是典型的利用紫外线消毒的例子。 2022-12-29

IAEA|用核技术为受旱灾的安哥拉牛提供气候智能型核能解决方案

“与传统技术相比,核技术和相关技术具有显着优势,可以帮助我们设计出混合天然牧场和饲料补充剂的牛均衡饮食。这可以提高牛的生产力,并为安哥拉的气候智能型农业奠定基础,”粮农组织/原子能机构粮食和农业核技术联合中心的项目负责人兼牲畜繁殖专家 Victor Tsuma 说。他解释了该项目将如何使用稳定碳同位素技术和近红外反射光谱 (NIRS) 来确定牛消耗的当地牧场的营养价值。 2022-12-29

怀柔科学城:明年又有两个“大科学装置”试运行

近年来,怀柔科学城科学设施建设硕果累累。2019年7月29日,空间环境地基综合监测网(子午工程二期)开工建设,意味着国家在“十二五”和“十三五”时期布局的5个大科学装置已全部在怀柔科学城启动建设。目前,子午工程二期正加快进行科研设备采购、进场安装调试等工作。 2022-12-28

湍流模拟揭秘等离子体中能量流动

美国能源部普林斯顿等离子体物理实验室研究人员发现了一种太阳日冕加热过程,它有助解释为什么围绕太阳的大气层——日冕会比太阳表面热得多。这一发现或会提高解决一系列天体物理难题的能力,例如恒星形成、宇宙中大规模磁场的起源,以及预测可能扰乱手机服务和地球电网停电的空间天气事件的能力。 2022-12-28

英国Daresbury实验室的LIGHT直线质子加速器成功发出230 MeV质子束流

LIGHT直线质子加速器基于欧洲核子研究中心(CERN)开发的大型强子对撞机技术,以直线加速而不是传统的螺旋加速发射质子,降低了屏蔽要求,递送束流的速度更快,放射能量更聚焦,可以使质子治疗更具可及性和经济实惠。 2022-12-28