子新闻
一种生产医用放射性同位素的新方法已经通过了它的第一个里程碑,它将目标暴露在能量密度比太阳核心高几个数量级的电子束中。这一成就为使用不需要浓缩铀且产生很少核废料的电子加速器的替代放射性同位素生产方法铺平了道路。
2022-04-01
北京大学为非涉核高校,得益于其在医用核素开发、放射性药物研制及临床转化方面的突出工作,成为本次唯一一家被授予“国家原子能机构(放射性药物研发与临床应用)研发中心”的高等院校。北京大学肿瘤医院杨志主任作为代表参加授牌仪式。
2022-04-01
ATLAS 实验的物理学家正在寻找新的长寿命粒子,以帮助解释我们宇宙的几个未解之谜。高能碰撞使研究人员能够研究衰减非常快的重粒子,例如希格斯玻色子。但与重标准模型粒子(在大型强子对撞机 (LHC) 碰撞点的几毫米内衰减)不同,新的长寿命粒子 (LLP) 在衰减之前可以通过 ATLAS 探测器传播相当大的距离。
2022-03-31
原子能院“十四五”综合发展规划,站在“两个一百年”奋斗目标的历史交汇点上,面向“十四五”开局。
2022-03-31
中子活化分析是利用中子轰击待分析的样品,通过核反应使其中多种元素(每种元素的至少一种同位素)生成放射性核素,通过测量这些核素发射特征射线的能量和强度,对相应元素进行定性、定量分析,以其高灵敏度、高准确度、非破坏性和多元素同时分析等优点广泛应用于宇宙科学等领域。
2022-03-30
希格斯玻色子在转化或“衰变”成其他粒子之前只存在极短的时间。正是通过对其中一些衰变产物的检测,这种独特的粒子在大型强子对撞机 (LHC) 的粒子碰撞中首次被发现——并将继续被发现。
2022-03-30
几乎无质量且很少与其他物质相互作用的中微子分为三种类型——电子、μ子和 tau——取决于它们是如何产生的。当粒子以近光速飞驰时,一种类型可以变形为另一种类型。为了研究这些中微子振荡,物理学家可以将粒子加速器产生的一束μ子中微子发射到数百公里外的巨大探测器,该探测器计算到达的μ子中微子以及沿途出现的电子中微子。
2022-03-30
该项研究的主要研究者,四川大学华西医院腹部肿瘤科主任、肿瘤分子靶向治疗研究室主任毕锋教授指出:“近年来,CLDN18.2作为肿瘤特异性抗原成为分子生物研发领域的热门靶点,一些研究的初步疗效结果显示该靶点具有高度成药的可能性,而IBI389双抗区别于传统单抗类药物,能促进T细胞浸润肿瘤并产生杀伤作用,增强了单药的抗肿瘤效应,我们很期待IBI389在CLDN18.2表达的实体瘤患者中能获得积极结果。”
2022-03-30
比如,一部分患儿因为肿瘤未能全切,须进一步放疗化疗或者质子治疗,这就需要长期随访,动态观察患儿的肿瘤生长情况,及时调整治疗方案;大部分患儿术后仍需要激素替代治疗,因此长期的神经内分泌监测非常必要,神经外科和内分泌科要联合为患儿调整激素替代治疗方案,保证患儿生存状态良好、拥有正常的生长发育。
2022-03-30
“能够产生高能宇宙粒子(包括强子和电子)的天体,被统称为宇宙粒子加速器。其中,能够产生强子的天体被称为宇宙线加速器。”陈松战表示,迄今为止,人们观测到的宇宙线的最高能量已达到1020电子伏特,是目前人类最大的粒子加速器——欧洲核子中心大型强子对撞机(LHC)所能加速粒子能量的1000万倍。
2022-03-30