氚新闻
公司以“产、学、研”方式联合攻关,通过先进核辐射在线监测关键技术研究,突破了高氡背景下气溶胶测量技术、高氡背景下氚测量技术和核辐射探测器智能化设计等技术,在国内首先研制出大型区域一体化、网络化的“HYEP90国产化智能核辐射在线监测系统”,广泛应用于核电站、核设施、燃料厂房、后处理及工艺厂房等专用领域的核辐射在线监测预警。
2023-01-09
研究人员还应用了其他核技术,可以检测环境样品中是否存在 NWT 放射性核素,包括高分辨率伽马射线能谱法(检测铯的存在)和液体闪烁计数(检测氚的存在)。
2023-01-06
2022年德国最重要的科学发现之一是卡尔斯鲁厄理工学院的国际氚中微子实验(KATRIN)获得了中微子质量的新上限:0.8eV(电子伏特),首次将中微子的质量推向亚电子伏特级,打破了中微子物理学中与粒子物理学和宇宙学相关的一个重要“界限”——1eV。这将有助于发现超越标准模型的新物理定律。
2023-01-04
储存在福岛第一核电站的水箱中的水使用先进液体处理系统 (ALPS) 进行处理,以去除大部分放射性。无法通过 ALPS 去除的氚和一些含量非常低的其他放射性核素在处理后仍留在水中。在计划于 2023 年开始放水之前,必须对水中的放射性进行适当的表征,才能进行准确的放射性环境影响评估,以确保人员和环境的安全。
2022-11-23
在激光聚变实验中,激光加热由氘和氚离子组成的燃料,形成等离子体,从中各离子间发生聚变反应。
2022-11-17
新一代融合技术公司SHINE 技术和SHINE欧洲今天宣布,荷兰当局批准了一项重要的促进提案,以制定一项计划,生产各种氚同位素用于核医学。
2022-10-25
《东京新闻》报道说,核污水所含的放射性铯和氚会分别产生伽马射线、贝塔射线。东电公司的工作人员在接待参观团体时,用只能检测伽马射线的放射剂量仪靠近盛有经过处理的核污水的瓶子,瓶子里盛的水所含氚是排放标准的约15倍,但该仪器没有反应。东电公司从2020年7月起,向约1.5万名参观者进行了上述演示。
2022-10-08
不仅是“嫦娥石”,核地研院的研究团队还首次成功获得嫦娥五号月壤样品中氦-3的含量和提取参数。氦-3一直被视为未来重要的清洁聚变资源之一。而月球则是储存氦-3的天然“仓库”。核地研院第一批月球样品使用责任人黄志新介绍,目前的核聚变实验主要利用氘—氚反应来开展,但这种方式的核聚变会产生中子,具有一定危害性。
2022-09-27
近一段时间,日本政府、东京电力公司等就强推日本福岛核污染水排海计划动作频频,加快排海方案审批进程,启动核污染水管道排水口等工程建设,引发日本国内及韩国等多方人士的广泛批评和抗议。
2022-05-24
核聚变的主要燃料取自氢的同位素氘(重氢)和氚(超重氢)。
2022-02-24