热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

离子体物理新闻

橡树岭国家实验室超级计算机模拟或为核聚变反应堆失控电子问题提供解决方案

一项在美国能源部橡树岭国家实验室的200 千万亿次超级计算机Summit上进行的模拟研究,可能为国际核聚变工厂ITER中的托卡马克装置内失控电子问题提供了潜在的解决方案。该研究成果由普林斯顿等离子体物理实验室的研究科学家刘昌(Chang Liu)及其团队发表在《物理评论快报》上 2025-01-08

捷克的中型高场托卡马克装置:COMPASS Upgrade

韩国聚变能研究所(KFE)与捷克科学院等离子体物理研究所 (IPP)签署了一份谅解备忘录,双方将在装置运行、聚变能数字工程等领域展开密切合作和研究(更多信息请查阅:韩国与捷克携手加强聚变能科学与技术领域的合作)。后者目前正在建设捷克的中型高场托卡马克装置-COMPASS Upgrade,预计将在2025年正式投入运行 2025-01-04

国产最大尺寸超导磁体动态测试设施建成

记者从中国科学院合肥物质科学研究院等离子体物理研究所获悉,为下一代“人造太阳”研制核心部件的大科学装置“聚变堆主机关键系统综合研究设施(CRAFT)”日前取得新成果,建成了国际尺寸最大、实验条件最完善的大型超导磁体动态性能测试系统并为“聚变工程堆中心螺管系统”完成首轮测试实验 2025-01-03

PPPL科学家通过模拟发现法拉第屏有助于提高等离子体加热效率

美国普林斯顿等离子体物理实验室(PPPL)宣布其科学家通过计算机模拟发现,当法拉第屏与天线略微倾斜5度时,可以有效阻止慢速模式产生,从而提高等离子体的加热效率 2024-12-27

2024年度EAST科技委员会会议召开

2024年度EAST科技委员会会议在等离子体所召开,来自中国工程物理研究院、哈尔滨工业大学、中国科学技术大学、清华大学、合肥工业大学、中国科学院理化技术研究所、物理研究所、等离子体物理研究所、核工业西南物理研究院等单位的16位专家参加会议 2024-12-27

ITER向核聚变之父致敬

维利霍夫院士于 12 月 5 日逝世,他是 ITER 项目的推动者(图片来源:ITER)近日,全球核聚变界知名人物、俄罗斯物理学家叶夫根尼·维利霍夫(1935-2024)于12月5日逝世,享年89岁。ITER(国际热核聚变实验堆)组织对此表示深切哀悼,并发表悼念声明。ITER在声明中提到,在外太空深处,有一颗以维利霍夫命名的小行星——Velikhov,它位于火星和木星之间,见证了这位物理学家对等离子体物理学和热核反应堆发展的卓越贡献。Velikhov院士不仅是核聚变研究史上... 2024-12-14

普林斯顿等离子体物理实验室在仿星器性能提升上取得突破

仿星器研究的一个关键挑战是将高能粒子保持在等离子体内 2024-12-10

研究表明量子“自旋”可以提高聚变燃料的效率

调整氘氚聚变燃料的量子自旋特性可以显著提高其效率,并使其更容易经济地发电。普林斯顿等离子体物理实验室 (PPPL) 的研究人员在一项新研究中发现,与非极化燃料相比,自旋极化氘氚 (DT) 燃料中氘的含量多于氚,可将氚的燃烧效率提高至少十倍,而不会影响聚变功率输出。这种方法将产生两大影响 - 一是需要更少的氚,氚在自然界中很稀有,需要培育才能用于聚变;二是可以缩小聚变电站的整体规模,使其更容易获得许可、定位和建造。 这些措施结合起来... 2024-11-21

IPP的最新实验证实了“RMP通过形成磁岛抑制ELM”的假设

研究团队合影,从左到右分别是Verena Mitterauer、Matthias Willensdorfer 博士、Matthias Hoelzl 博士、Wolfgang Suttrop 博士近日,马克斯·普朗克等离子体物理研究所(IPP)研究团队在ASDEX Upgrade托卡马克装置上进行共振磁扰动(RMP)抑制边界局域模不稳定性(ELM)的实验过程中,用高时空分辨的电子回旋辐射诊断,在等离子体边界台基的顶部区域,首次清晰地观测到小磁岛的形成,为磁岛导致ELM抑制的理论提供了关键的实验证据。该项研究成 2024-11-14

NSTX-U装置重启取得重要进展,核心磁体第一象限构建完成

11月5日,Interesting Engineering刊文《US completes first key magnet for apple-shaped nuclear fusion reactor》,介绍了普林斯顿等离子体物理实验室(PPPL)已完成国家球形环面实验升级版(NSTX-U)核心磁体第一象限的复杂构建过程,实现了一个重要里程碑。PPPL正在组装两个高电流磁体,以创建环向场-欧姆加热线圈(TF-OH)束。这些磁体构成了NSTX-U的核心,这类似于苹果的核心。它们的设计目标是产生比其他大型球 2024-11-06