热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

将原子冷却到零下272度后,成功激发到高能量的里德堡状态!

2021-08-13 11:39     来源:博科园     原子核
冲绳科技大学研究生院(OIST)量子技术部轻物质相互作用的研究人员,在纳米薄光纤附近产生了里德堡原子,即异常大的激发原子,其研究发现发表在《物理评论研究》期刊上,标志着量子信息处理的新平台取得了进展,该平台有可能给材料和药物发现带来革命性的变化,并提供更安全的量子通信。由于里德堡原子对电场和磁场的非凡敏感性,长期以来一直激起物理学家的兴趣。

与纳米光学纤维结合使用,这些超敏感原子可以在新型可伸缩量子设备中发挥重要作用,然而,里德堡原子显然很难控制。冲绳科技大学研究生院的博士生、该研究的第一作者克里希纳普里亚·苏布拉莫尼安·拉贾斯里(Krishnapya Subramonian Rajasree)说:这项研究的主要目的是让里德堡原子接近纳米纤维。这一装置为研究里德堡原子和纳米纤维表面之间的相互作用创造了一个新系统。

不寻常的原子

为了进行研究,科学家们使用了一种名为磁光陷阱的设备来捕获一簇铷(Rb)原子团,将原子的温度降低到绝对零度以上一度(约-272摄氏度),并让纳米纤维穿过原子云。然后,科学家们使用482 nm的光束穿过纳米纤维,将铷原子激发到更高能量的里德堡状态。这些围绕纳米纤维表面形成的里德堡原子,在尺寸上比普通的里德堡原子要大。当原子的电子获得能量时,它们会远离原子核,产生更大的原子。


(上图所示)科学家们使用一种名为磁光阱(MOT)的装置来捕获和冷却铷原子,然后将其激发到里德堡状态。图片:Okinawa Institute of Science and Technology

这种不同寻常的大小提高了原子对其环境和其他里德堡原子存在的敏感度。通过实验,科学家们将里德堡原子带到了距离纳米光纤仅几纳米的范围内,从而增加了原子与在纳米光纤中传播的光之间的相互作用。由于里德堡原子的反常性质,它们逃出了磁光阱。通过研究原子损失如何依赖于光的功率和波长,科学家们能够理解里德堡原子行为的各个方面。

利用光在纳米光纤中传播的能力来激发并控制里德堡原子,可能有助于为量子通信方法铺平道路,同时也预示着量子计算的渐进进展。OIST的博士后学者、该研究的合著者杰西·埃弗雷特(Jesse Everett)博士说:了解光和里德堡原子之间的相互作用是至关重要的,利用这些原子可以利用非常少量的光安全地路由通信信号。展望未来,研究人员希望结合光学纳米纤维进一步研究里德堡原子的性质。

在未来的研究中,研究打算观察尺寸更大的里德堡原子,以探索这个系统的可能性和局限性。这是一个由冷里德堡原子和纳米光纤界面组成的可控混合量子系统,利用双光子梯形激发。研究也证明了在距纳米纤维表面亚微米距离的相干和非相干里德堡激发。这项工作在研究亚微米里德堡原子-表面相互作用和将冷里德堡原子用于全光纤量子网络方面取得了新进展。


推荐阅读

科普 | 核磁共振有辐射吗?

本期《辐射微科普》将为大家解读“核磁共振有辐射吗?” 2021-08-17

核安全微科普:坐在同一张椅子上的三兄弟

核安全微科普:坐在同一张椅子上的三兄弟 2021-08-16

核物理学家寻找质子颜色透明度的线索

质子存在于宇宙中每个原子的原子核中。在原子核内,它们紧紧地附着在相邻的质子和中子上。然而,有可能敲除尺寸较小的质子,这样当它们离开原子核时,它们与附近粒子的相互作用就会减少。这种现象称为颜色透明度。 2021-08-16

无中微子双贝塔衰变:寻找马约拉纳中微子之路

无中微子双贝塔衰变是目前粒子物理与核物理学家积极寻找的一种极其稀有的原子核衰变模式。它的发现将验证中微子是否是其本身的反粒子,也就是通常指的马约拉纳费米子。 2021-08-12

原子核和轻子:计算截面的里程碑

图 1. q = 300MeV/c 时4 He 的纵向响应函数。HH 结果取自参考文献。[44],GFMC 结果来自参考文献。[43],以及来自参考文献的实验数据。[45]。图片来源:DOI:10.1103/PhysRevLett.127.072501美因茨约翰内斯古腾堡大学 PRISMA+ 卓越集群中的一个团队成功计算了钙元素的原子核在与电子碰撞时的行为。结果与可用的实验数据非常吻合。第一次,基于基本理论的计算能够正确描述像钙一样重的原子核的实验。特别相关的是这种计算在未来解释中微子实验... 2021-08-11

阅读排行榜