射线束新闻
科学家们正准备释放异常强大的X射线束,这将有助于揭示宇宙在最小尺度上的运作方式。由于对加利福尼亚州门洛帕克 2 英里长的粒子加速器进行了升级,使光束成为可能,该加速器将把电子激发到光速的 99.9999999%——大约每小时 6.7 亿英里——以创建有望解开缠结的图像诸如光合作用的基础以及材料如何导电等奥秘。
2022-04-07
瑞士保罗谢勒研究所(PSI)的科学家开发了一种突破性的X射线消色差透镜。这使得X射线束即使具有不同的波长也可以准确地聚焦在一个点上。根据14日发表在《自然·通讯》上的论文,新透镜将使利用X射线研究纳米结构变得更加容易,特别有利于微芯片、电池和材料科学等领域的研发工作。
2022-03-17
美国能源部 ( DOE ) 阿贡国家实验室的工程师们共同创造了一种精致产品:一个将推动 X 射线科学未来的升级设施,从而带来使我们生活得更好、更安全的突破。
2022-02-24
实验过程中的光谱断层扫描装置,是将用于稳定的X射线透明支撑杆安装在微观XAS光束线中。采用截面为~1.5*1.0 mm-2和调整在Cu的K吸收边能量的平行几何X射线束,来获取催化剂整体的全场投影图像。
2021-08-30
最先进的同步加速器和操作设施,统称为康奈尔高能同步加速器源 (CHESS),正在寻求为 X 射线束添加额外的线。
2021-07-19
X射线荧光是原子在受到初级X射线束激发后发生电离作用,发射出X射线光子。X射线具有波粒二象性,既可以看作粒子(能量),也可以看作电磁波(波长)。
2021-07-15
研究人员使用高级光子源 ( APS )产生的强大 X 射线束,确定了在癌细胞扩散中起关键作用的酶的结构,从而有助于更有效地治疗癌症。
2021-07-12
在伦敦大学学院(UCL)研究人员领导的一项新研究中,首次用X射线测量了人类染色体的质量,这些染色体几乎包含了我们身体每个细胞的生命“指令”。在这项发表在《染色体研究》上的研究中,研究人员利用 英国“钻石”同步辐射光源的强大X射线束来确定46条染色体中的电子数量,他们用它来计算质量。
2021-06-11
同步加速器将电子加速到接近光速,以产生极亮的光。这些特殊的X射线束可以窥视生物细胞或其他材料中的分子。X射线几乎看不到生物分子,因此研究人员必须在X射线照射时发光的分子上附加分子标签。
2021-03-18
在他们的研究中,研究小组使用电磁透镜将超高电子能量(VHEE)光束聚焦到了几毫米的区域,从而可以在控制肿瘤强度的同时快速扫描整个肿瘤。
2021-02-24