超导材料新闻
托卡马克能源公司在磁体演示系统方面取得重要进展,其名为Demo4的装置首次成功复制了聚变电站的磁场。该装置采用托卡马克结构建造,是一套完整的高温超导磁体。近期在英国牛津郊外总部进行的测试中,Demo4在零下243摄氏度的低温环境下,实现了11.8特斯拉的磁场强度。强磁场由大电流通过笼状排列的电磁线圈阵列产生,磁体由高温超导带材精密绕制,关键内涂层为稀土钡铜氧化物(REBCO)超导材料。在聚变电站,REBCO超导带材需在复杂复合磁场环境中运...
2025-11-22
近日,东部超导科技(苏州)有限公司(以下简称东部超导)依托自主研发的IBAD+MOCVD技术路线,在产品性能和产能规模上实现重要进展,其中低温磁场下千米级高性能REBCO带材批量化制备能力在国际上处于领先水平。东部超导,自2011年起专注于第二代高温超导材料研发和制造,采用IBAD+MOCVD技术路线,自主研发成套生产设备,以独有的重掺杂强磁通钉扎REBCO超导薄膜制备方法在行业中立足,形成了集超导材料、应用及检测于一体的超导产业集群。今年9月,专用于...
2025-11-20
10月30日,国内超导材料龙头——西部超导材料科技股份有限公司(简称西部超导,股票代码:688122.SH)公开发布消息,拟联合应用单位成立合肥聚能超导线材科技有限公司(以下简称合肥聚能,暂定名,最终以工商登记核准名称为准),建设我国聚变工程专用高性能超导线材研发和产业化平台,形成包括高性能Nb3Sn低温超导线材、Bi2212高温超导线材等产品体系,有利于进一步推动我国聚变工程快速发展。公告显示,西部超导将与西北有色金属研究院、聚变新能(安徽)有...
2025-10-31
仿星器作为未来聚变能系统极具前景的设计之一,其优势在于能借助高度复杂的磁场将数百万摄氏度的等离子体约束在稳定状态。这种磁场一般由大型三维线圈产生,如位于格赖夫斯瓦尔德的马克斯·普朗克研究所(IPP)的文德尔斯坦7-X仿星器所使用的线圈,它是世界先进仿星器代表,其线圈由超导材料制成,冷却至约4开尔文(零下269摄氏度)时可无电阻传输电流。对于未来核电站而言,高温超导体(HTS)是颇具前景的选择。这类材料在极高温度(甚至高达93开尔文...
2025-07-27
众多磁约束聚变路径中,仿星器(stellarator)利用独特三维磁场约束等离子体,具有稳态运行、免疫破裂等优势,其聚变功率与磁场的四次方成正比。高温超导(High Temperature Superconductor, HTS)材料具有极高的载流能力,因此在提高核聚变功率和减小装置尺寸方面具有显著优势。然而,最常见的规模化应用高温超导材料稀土钡铜氧ReBCO具有独特的电磁和机械性能,对仿星器三维线圈的设计提出了新的挑战。近日,等离子体物理与聚变工程系先进仿星器课题...
2025-07-14
核聚变,这一为太阳提供能量的过程,被视为实现几乎无限量清洁能源的诱人途径。在太阳核心中,物质密度远超铅的10倍,温度高达1500万开尔文,使得氢的电离同位素(氘和氚)得以克服静电排斥,聚变成氦核并释放出高能中子。然而,在地球上模拟这一过程面临着巨大的工程和材料挑战。为了实现核聚变,科学家们采用了不同的策略,其中最常见的是使用在超低温下运行的强超导磁体来限制极热的氢等离子体。这种方法虽然前景广阔,但面临着一个关键问题:聚变反应产...
2025-03-03
揭示了镍酸盐中高温超导电性的结构起源,并为镍酸盐的进一步优化设计与合成提供了重要指导作用。这将推动镍基高温超导材料的发展,也让朝着在常压环境下实现镍基高温超导及其潜在应用的目标迈出了关键一小步。这是首个同时提供零电阻和抗磁性证据的研究报道,表明双层镍酸盐具有块体高温超导电性。这项工作的其中一个重要发现在于揭示了不同 Ruddlesden-Popper 相的共生对于实现块体高温超导性是有害的,而这一点此前在该领域之内处于被忽...
2024-10-24
今年二月,托卡马克能源公司宣布已建造出世界上第一套新一代高温超导(HTS)磁体,并将在聚变发电厂相关场景中进行组装和测试。其 Demo4 设施将由 44 个单独的磁性线圈组成,这些线圈使用 38 公里长的高温超导带制造,该带可承载零电阻的电流,并且所需的冷却功率比传统超导材料少五倍。
2023-09-15
“我们将联合相关单位围绕国家医学中心建设的‘揭榜挂帅’任务,开展以超导重离子加速器为代表的国际一流水平先进医疗装备的研制和应用。”西部超导材料科技股份有限公司副总经理闫果表示,研发过程中重点需要突破低温强磁场超导技术。将超导技术运用在重离子加速器之后,制造和运维成本是进口设备的三分之一。
2022-07-27
对超导材料钇钡铜氧化物(或称YBCO)的实验表明,在某些条件下,用激光脉冲使其失衡,可以使其超导--无损耗地传导电流--比研究人员预期的要更接近室温。鉴于科学家们已经在室温超导体上工作了三十多年,这可能是一个重大突破。
2022-05-05