热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

中国科学院高能物理研究所宣布国际首个地下700米中微子实验室建成运行

2025-11-19 15:31     来源:中国科学院高能物理研究所     中微子

从地面入口乘上缆车,沿斜井隧道缓缓下行,伴随鼓风机的持续轰鸣,约15分钟后,就会抵达一个宽敞明亮的地下空间。这里位于地下700米深处,正是江门中微子实验(JUNO)所在地。

中国科学院高能物理研究所宣布国际首个地下700米中微子实验室建成运行

11月19日,中国科学院高能物理研究所在此举办新闻发布会,宣布JUNO装置建设成功并发布首个物理成果。利用JUNO投入运行后59天获取的数据,JUNO合作组成功测量了两个关键的“太阳中微子振荡参数”,并将测量精度提升至此前最好结果的1.5到1.8倍。

作为国际上首个建成的新一代超大规模、超高精度的中微子实验装置,JUNO主要解决哪些科学问题?研究中微子对普通人有什么意义?为什么要不遗余力地提高中微子振荡参数的测量精度?针对以上问题,相关专家给出了具体的回答。

第一问:中微子有隐身特性,研究它能揭示哪些奥秘?

中微子是一种“幽灵粒子”,能轻易穿透地球和人体,却几乎不留痕迹。“中微子的这种几乎不与物质作用的‘隐身’特性,使它成为完美的宇宙信使,携带着关于宇宙诞生与演化的古老信息。”JUNO合作组发言人、中国科学院高能物理研究所王贻芳院士说,JUNO就是一个研究中微子的专用大科学装置。

“中微子可以分为三种:电子中微子、缪中微子和陶中微子。JUNO的核心目标,是确定这三种中微子的质量顺序,也就是搞清楚它们当中究竟哪个最重、哪个最轻。”中国科学院高能物理研究所所长曹俊说,这是当前中微子物理最根本的科学问题之一。

JUNO还将精确测量中微子振荡参数,并对太阳中微子、地球中微子、超新星中微子、大气中微子、质子衰变等进行交叉研究。

“通过这些研究,JUNO将揭示天体和行星的内部奥秘,并搜寻宇宙背景信号。我们也相信,这些研究将极大推动我们对中微子的理解,并有望发现突破当前理论框架的新物理。”曹俊说。

第二问:追溯万物的开端,对我们普通人有什么意义?

“中微子与我们的最直接联系,可以追溯到万物的开端。它决定了我们能否存在。”王贻芳说。

在宇宙大爆炸后的极早期,空间中曾遍布着微小的“密度涨落”,它们是未来所有星系、恒星乃至生命的原始“种子”。但如果中微子完全没有质量,它就会以光速飞驰,从而将这些珍贵的初始“种子”全部抹平。

王贻芳解释,正是因为有一点点微小的质量,中微子才得以减缓速度,允许宇宙早期的“密度涨落”被保留并放大,最终引力才能成功地凝聚出星系、银河系、太阳、地球以及人类。

“我们研究中微子,本质上是一种对自然规律的纯粹探索。它短期内可能确实没有直接的用处,但从长远来看,其价值是无法预料的。就像电刚被发现时,人们也不知道它将来能用来做什么。”曹俊说,“这正是基础研究的意义:我们先去理解世界,而改变世界的种子,往往就埋藏在这份理解之中。”

第三问:聚焦振荡参数测量,为什么要不遗余力提高精度?

我们目前测量的中微子振荡参数,是自然界的基本常数。这些参数的精确数值,对许多前沿研究来说,至关重要。

“比如,物理学中一个未解之谜:中微子是否是自身的反粒子?这个问题的答案,直接关系到我们为何能存在于这个宇宙之中。”曹俊说,对这个问题的最终判断,依赖于我们对中微子基本参数的精确了解。如果这些基本参数测不准,科学界可能就需要耗费十年甚至更长时间,投入巨大资源去设计多个新实验来反复验证。

曹俊认为,如果对这些参数的测量足够精确,许多原本模糊的物理图像会变得非常清晰,我们也能够借此检验是否存在超出标准物理模型的新物理。

JUNO刚刚发布的首个成果,正是这一精确测量理念的生动体现。该成果显著提高了“太阳中微子振荡参数”的测量精度。该参数可以通过两种方法测量:一种是利用太阳发出的中微子,另一种是利用核反应堆产生的中微子。但这两种方法此前对中微子振荡参数之一的质量平方差的测量结果,有大约1.5倍标准偏差的不一致。

“这种不一致,可能是源于实验误差,但也可能暗示存在新物理。我们进行高精度测量,能够以更高的准确度澄清这一差异,解决测量不一致问题。”王贻芳解释。


推荐阅读

江门中微子实验首个物理成果在建成两个月后发布

中国科学院高能物理研究所在广东省江门市举办发布会,宣布江门中微子实验(JUNO)装置建设成功并发布了首个物理成果。经过JUNO国际合作组十余年的设计和建设,JUNO成为国际上首个建成的新一代超大规模、超高精度的中微子实验装置。JUNO在运行期间首批获取的数据显示,其探测器关键性能指标全面达到或超越设计预期,表明JUNO已准备好开展中微子物理前沿研究。该探测器性能分析文章已提交《中国物理C》,并于11月18日在预印本网站arXiv上发布。在... 2025-11-19

美国能源部橡树岭国家实验室推出GPU驱动粒子模拟软件,算力革命加速核物理研究

在高能物理研究领域,数据处理与分析一直是关键挑战。由美国能源部橡树岭国家实验室(ORNL)牵头的创新项目 Celeritas,正凭借其独特优势,为这一难题提供有效解决方案。Celeritas提供软件工具,确保粒子分析模拟程序能在最快超级计算机上运行,加速揭示宇宙本质。Celeritas 代码优势显著,主要能在图形处理器(GPU)上运行。GPU 并行处理能力出色,与依赖传统中央处理器(CPU)的模拟相比,是重大升级。CPU 擅长顺序任务,而 Celeritas借助 GPU,能快速处理大数据,... 2025-11-19

南极冰立方观测网络新研究:中微子多重体与光学瞬变关联探索

天体物理学领域,对高能粒子如中微子的观测始终是一大挑战。多数科学家推测,这些粒子源自超新星爆发、潮汐瓦解事件等极端天体现象,但此假设尚未获确凿验证。近期,一项研究首次尝试将南极冰立方观测网络捕获的中微子多重体与光学瞬变现象相联系,为这一领域带来新进展。中微子多重体属罕见事件,特指短时间内多个高能中微子自同一方向抵达,此次研究中,三个中微子在一个月内被相继探测到。研究利用了兹威基瞬变源观测站(ZTF)的数据,该望远镜专为... 2025-11-17

中国散裂中子源的“硬核心脏”重金属钨靶

在中国散裂中子源(CSNS)的核心,每时每刻都在上演着微观世界的极致碰撞:质子被加速至接近光速,轰向重金属钨靶,瞬间迸发出照亮物质内部结构的中子。承受这场光速撞击的靶体,就是CSNS的心脏。它为何由钨打造?取得了什么技术突破?又如何赢得了世界的认可? 让我们一起揭开它的奥秘。01为何非钨不可?三个硬核理由说了算!面对比太阳表面还炽热的能量轰击,为什么CSNS选择了钨来当这个硬汉?想象一下用大锤砸西瓜的画面,如果你想溅出更多的果肉,就得... 2025-10-19

江门中微子实验正式运行

8月26日,江门中微子实验(JUNO)成功完成2万吨液体闪烁体灌注,并正式运行取数。经过十余年准备和建设,JUNO成为国际上首个运行的超大规模和超高精度中微子专用大科学装置。完成JUNO探测器灌注并开始运行取数,是一个历史性的里程碑。这是国际上首次运行的超大规模和超高精度的中微子专用大科学装置,将使我们能够回答关于物质和宇宙本质的基本问题。中国科学院院士、JUNO合作组发言人王贻芳说。位于水池内(尚未灌水)的中心探测器(外部图)JUNO... 2025-08-26

阅读排行榜