专家观点 > 正文

脉冲星射电辐射起源于等离子体的涨落?

电磁辐射 激光
发布:2020-09-24 10:28:12     来源: 中国物理学会期刊网

荷电粒子(蓝色)沿着脉冲星磁力线运动而产生相干辐射束(紫色)。Philippov 等人认为,脉冲星磁层中正反电子对产生时的涨落导致了这一辐射

作为每秒旋转多达数百次的中子星,脉冲星的射电辐射束看似不可思议的明亮。物理学上要求这么强的辐射通过相干机制产生,即:大量粒子同步发射,正如原子步调一致地辐射而产生激光那样。自脉冲星发现以来,虽然进行了大量研究,但相干机制至今难以捉摸。纽约 Flatiron 研究所 Philippov 及其同事提出一个有希望的新方案,以解释这种相干辐射。他们的计算(目前在二维简化情况进行)表明:在星体附近,正反电子对产生时的涨落过程可激发所需的相干辐射。

就宇观而言,脉冲星实在太小,然而它们却拥有宇宙中最强磁场。此外,这种超新星爆炸残留的脉冲星高速旋转。部分自转能转化为脉冲星磁极向外出射的、稳定的一束电磁辐射;因星体旋转,辐射周期性地扫过我们的视线(类似灯塔)。1967年,射电望远镜首次发现脉冲星,至今已找到数千颗。

若为非相干的黑体辐射,则意味着脉冲星射电亮温度不切实际得高,达 1025—1030 K。故辐射必然是相干的。尽管亮度低得多,但已观测到来自地球和木星的磁层以及太阳的相干射电辐射,且实验室亦进行了较好的研究。天体物理环境中,这种辐射通常涉及等离子体。当等离子体中荷电粒子在空间成团运动或具有相同动量时,往往导致相干性;粒子能级反转(即处于激发态的粒子数多于基态)时也会发生。能级反转是产生激光的机制。

至今尚不明确脉冲星磁层中有哪些相干过程。脉冲星等离子体只有正反电子对,不同于太阳的电子和离子。电子对等离子体由高能光子转化而来,而旋转磁化脉冲星感应的强电场又加速电子辐射高能光子。这就触发级联过程:光子产生电子对,正反电子辐射更多的光子从而产生更多电子对,最终形成稠密的电子对等离子体。产生的电子对接近光速沿磁力线方向运动(见图),且空间分布非均匀。

之前不少理论模型解释过这种等离子体如何激发观测到的辐射,但都存在基本问题。某些不稳定性可能导致粒子沿着弯曲磁力线成团,从而产生“相干曲率发射”。然而,这一机制产生的辐射远低于观测频率,并且要求相干团块中电子对的能量弥散比预期值小得多。

Philippov 等采纳了 Timokhin 等早年提出的新想法,即:脉冲星磁层中电子对级联可能并非像以前推测的那样平稳地进行,而是在亚毫秒时间内完成。通过一维模拟,Timokhin 发现,粒子被电场加速并辐射光子时,会产生大量电子—正电子对,从而完全屏蔽电场。这一屏蔽中断了电子加速机制,并停止电子对生产过程。相对论电子逃离该区域后(不到毫秒),电场才会再现。Timokhin 还发现,这种重复屏蔽过程产生巨大的静电波。不过,鉴于电磁波为横波,其传播跟垂直于磁场方向的电场有关,故一维计算不可能得到沿磁场方向传播的电磁辐射。

Philippov 等将模拟推广至二维,在脉冲星表面附近较大的区域内进行动力学建模。考虑到脉冲星极冠区周围电场非均匀,他们发现的确会产生垂直于磁场方向的振荡电场,从而形成电磁辐射。这种电磁波由等离子体集体运动产生而非单粒子发射,自然是相干的。

模拟得到电磁波谱与观测吻合。然而关键问题依然存在:电磁波能达到观测亮度吗?它能逃逸出脉冲星磁层吗?只有大尺度的三维模拟才能回答这些问题。需指出的是,该机制可能过于有效。还要注意的是,他们的机制无法解释距离星体较远的地方产生的一类射电辐射(在蟹状星云脉冲星等看到)。

尽管有这些不足,该研究还是在探索脉冲星射电辐射机制方面迈出了一大步。Timokhin 等认为,可用类似的机制解释河外快速射电暴。值得一提的是,中国五百米望远镜 FAST 和国际平方公里阵 SKA 等都将脉冲星观测列为核心科学目标。期待早日揭示射电辐射的相干机制!

推荐阅读

中科院上海光学精密机械研究所李沙沙:超强超短激光研究将实现更大发展

激光,原子受激辐射的光。其原理是原子中的电子吸收能量后从低能级跃迁到高能级,再从高能级回落到低能级时,所释放的能量以光子的形式放出。这些被激发出来的光子光学特性高度一致,因此激光相比普通光源单色性、方向性好,亮度更高。 2020-04-24
阅读排行榜