热点关注:  
放射性同位素 粒子加速器 辐照杀菌 无损检测 高新核材 辐射成像 放射诊疗 辐射育种 食品辐照保鲜 废水辐照 X射线 中广核技 中国同辐

脉冲涡流新应用:复合金属层材料鉴别

2021-05-19 14:02          涡流检测 无损检测

涡流检测是建立在电磁感应原理基础上的一种非接触式无损检测方法,具有操作简单、检测速度快、安全等特点。

传统的涡流检测主要用于检测导电材料表面或近表面的伤痕,还可以用来对金属材料种类、合金成分、材料内部组织结构、热处理状态、硬度以及力学性能等进行鉴别。例如马钢高线厂线材混号的分选,在役电力变压器导线材料的快速识别,甚至还有适用于自动售货机、无人公交车的硬币涡流识别系统,可以对第5套硬币有效识别。上述这些研究成果采用的都是常规涡流检测,即以单一频率的正弦波作为激励信号,通过对目标检测区域内的感应电压幅值或相位进行采集和分析,在近表面实现对金属材料的鉴别,在单层金属的识别中实现了较好的应用。

目前,石油工业的原油传输管道常采用双层复合金属管,在管道出厂及工程安装现场的管理中需要对管道的材料进行鉴别。常规涡流检测在单层金属的检测中适应性较好,但是由于其检测深度浅、频谱范围有限,且对干扰信号敏感,在石油双层复合金属管的应用中存在一定的局限性。

相比于常规单频涡流,脉冲涡流具有频谱范围广、感应信号丰富、检测深度深、响应速度快等优势,只要对感应电压信号进行时域瞬态分析就可实现检测和评估。该技术在大壁厚结构的内部缺陷检测中应用广泛。

鉴于脉冲涡流具有可穿透大壁厚金属层的优势,中国核动力研究设计院的技术人员提出采用脉冲涡流技术对石油双层复合金属管进行材料鉴别,针对不锈钢包覆铜、铁、铝模拟复合金属层的试样开展脉冲涡流检测试验,对信号特征进行分析,以期为双层复合金属管的材料鉴别提供有效手段。

脉冲涡流检测原理


图1 脉冲涡流检测系统示意

脉冲涡流检测系统由检测探头、信号发生模块、信号接收模块、采集模块和上位机监控软件等组成。采用脉冲涡流系统对复合金属层进行检测时,需要具有一定占空比的宽带方波脉冲作为激励信号,经功率放大器放大后驱动检测探头激励线圈;受激励线圈磁场B0的作用,包覆金属层A和待检测被包覆金属层B中均会产生感应涡流,而涡流的分布、密度、流动形式受到激磁条件(如激励线圈的形状、尺寸、交流电流的频率等)、金属层A和B自身的电导率、磁导率、形状与尺寸等多种因素的影响;感应产生的涡流会分别形成与原磁场方向B0相反的磁场B1和B2,使通过检测线圈的磁通发生变化,则脉冲涡流响应磁场B是三部分磁场的叠加,即:B=B0+B1+B2

B0只取决于检测环境以及激磁条件,B1和B2受金属层A和B的材料及其几何尺寸的影响。实际检测中,叠加磁场B在检测线圈中引起电参数的变化即为脉冲涡流响应信号。该信号由检测探头的接收线圈检测到,经放大后被采集。信号中包含了金属层A和待检测金属层B的相关信息,对信号进行分析并提取相关特征可以用于金属层B的材料区分。

脉冲涡流检测试验


图2 复合金属层试样结构示意

复合金属层试样长200mm,宽200mm,金属层A厚1.5mm,材料为304不锈钢,其电导率为1.39×106S/m,磁导率为4π×10-7H/m(试验中采用的304不锈钢板带有微弱磁性,因此相对磁导率会略大于1)。待测金属层B厚5mm,材料分别为铜、铁、铝,其中铜的电导率为5.7×107S/m,磁导率为4π×10-7H/m;铁的电导率为9.9×106S/m,磁导率为2.4×10-4H/m;铝的电导率为3.5×107S/m,磁导率为4π×10-7H/m。

试验采用的脉冲涡流检测探头为一发一收式探头,即该探头由独立的激励线圈(180匝)和检测线圈(2300匝)构成,探头中心间距为20mm。

脉冲涡流的标准渗透深度是检测中极为重要的参数之一,其直接关系到涡流能否有效穿透包覆金属层A并抵达待测金属层B,从而实现有效检出。脉冲涡流激励信号(方波)是基波和许多谐波的组合,利用傅里叶展开可表示为:


 

式中:A0为信号直流分量;Φn为相位,n=1,2,…;基频ω1=2πf1;An为振幅谱。

当n=1,占空比为50%时,An在基频上取最大值,保证了脉冲信号的信噪比,此时可以得到脉冲涡流的标准渗透深度δPW为:


 

式中:Δ为脉冲宽度;σ为电导率;μ为磁导率。

根据工程经验,将激励信号的脉冲宽度设置为5ms,频率设置为100Hz,由上式可计算得其标准渗透深度 42.7mm。结果表明,脉冲涡流对试验中采用的304不锈钢板的有效检测深度不超过15mm,远小于理论计算值42.7mm,原因可能有,在脉冲涡流实际检测过程中,不锈钢加工工艺的差异影响了不锈钢的性能,线圈形状及结构参数影响了不锈钢板中的涡流分布状态,最终导致涡流渗透深度发生变化。304不锈钢在生产及加工过程中,受偏析、热处理不当、冷轧、冷作硬化等因素的影响,在母材内会产生一定量的铁素体及形变诱发马氏体,造成304不锈钢试板具有一定铁磁性;试验选用的304不锈钢为冷轧钢板,在轧制及平底孔加工过程中,晶体点阵易发生畸变,同时引起材料应力状态的改变,导致材料电导率发生变化。

采用脉冲涡流探头在试样304不锈钢包覆层上进行随机扫描试验,得到的典型脉冲涡流响应信号及特征如图3所示。


图3 典型脉冲涡流响应信号及其特征

目前在利用脉冲涡流对多层金属结构的裂纹进行检测时,主要采用主峰幅值、主峰面积、过零时间及衰减时间对裂纹的深度和尺寸进行表征。因此,选取这4种典型的脉冲涡流信号特征量,分析304不锈钢包覆层下铜、铁、铝3种金属的信号特征差异,寻找出区分3种金属材料的特征参量。


图4 3种试样的脉冲涡流响应信号及其特征

由图4可知,由于铁的磁导率远大于铜和铝,所以其脉冲涡流响应信号强烈,铁试样的主峰幅值明显高于铜和铝样,主峰幅值可作为区分铁磁性材料和非铁磁性材料的直接特征。对每种试样分别随机采集50次响应信号,提取信号的峰值幅值、主峰面积、过零时间和衰减时间4个特征,分布规律如图5所示,可见随机采集数据的各个特征值波动较小,数据重复性较好。


图5 3种试样的脉冲涡流信号特征分布

结语

当304不锈钢板下方放置不同材料的试样时,脉冲涡流信号特征存在差异,主峰幅值、主峰面积、过零时间和衰减时间可作为区分铁磁性材料和非铁磁性材料的依据,仅有过零时间可进行非铁磁性材料的区分。


推荐阅读

飞机液压导管裂纹的超声表面波检测

飞机液压导管在服役过程中受到制造工艺或装配等多种因素影响,其端头的应力集中处容易萌生疲劳裂纹,随着服役时间的增加,疲劳裂纹扩展后将导致液压系统压力降低,严重时则会使液压导管断裂失效,产生灾难性后果。目前,针对上述情况采取的预防措施为定期更换导管,但是这种方法费时又费力,并且有可能误将正常工作的导管也更换下来。为了确保飞行安全,亟需寻求一种可靠的在役检测方法对导管实施在线监控,尽早发现导管中的裂纹,减少其在服役过程中的成本。 2021-06-16

焊缝的X射线检测图像如何区别不同缺陷

焊缝的内部缺陷通常会使用无损检测方法进行辨别,X射线是最常用于焊缝缺陷检测的无损检测技术手段。X射线能够穿透金属件,由于缺陷位置与正常部位金属的密度不同,所以在X-Ray检测设备上所呈现的图像明暗对比不同。焊缝不同缺陷的X射线检测图像存在以下差异。 2021-06-11

揭秘无损检测行业的“尖子生”-TOFD无损技术

随着全国首个跨江斜拉桥RBPC钢桥面铺装重置工程的顺利完工,其技术上的创新突破引起多方关注,尤其是TOFD无损技术在桥梁日常养护检测和重置工程中的出色表现受到业内一直好评。 2021-06-06

超导带材损伤演化检测技术获得突破

如何有效检测出材料损伤起源与裂纹演化,直接观测和精确定位损伤部位,建立新的有效实验检测方法,弄清其内部损伤特征,是提升YBCO二代超导材料性能有效设计与性能评估的挑战性研究课题。近日,超导力学研究团队经过5年的攻关研究,弄清了上述关键问题,相关成果以《层状高温超导内部损伤模式的检测》为题发表在《自然-通讯》杂志上。 2021-06-04

T型接头TOFD检测时缺陷深度的定位计算与评判

标准NB T 47013 10-2015适用于等厚平板对接接头的TOFD检测,而不适用于T型接头的TOFD检测。等厚平板对接接头TOFD检测时探头间距等于直通波声程,深度定位计算的实质是计算以直通波声程为底边与以衍射波半声程为斜边的等腰三角形底边的高。 2021-05-31

阅读排行榜